Summarize by plot (or subplot) the posterior distribution of AGB values
Source:R/summaryByPlot.R
summaryByPlot.Rd
This function summarizes the matrix AGB_val
given by the function AGBmonteCarlo()
by plot. Or just do the sums
for each plot of the AGB if the argument AGB_val
is the resulting vector from the function computeAGB()
.
Arguments
- AGB_val
Matrix resulting from the function
AGBmonteCarlo()
(AGB_val element of the list), or just the output of the functionAGBmonteCarlo()
. Or the output of the functioncomputeAGB()
- plot
Vector with the code of plot
- drawPlot
a logical to draw the plot (see Details)
- subplot
Data frame, output of the function
cutPlot()
Value
a data frame where:
plot
: the code of the plotAGB
: AGB value at the plot levelCred_2.5
: the quantile 2.5\Cred_97.5
: the quantile 97.5\
If the subplot
is set, the output is a list with the previous data frame and a simple features (sf) geometry object.
Details
If some trees belong to an unknown plot (i.e. NA value in the plot arguments), their AGB values are randomly assigned
to a plot at each iteration of the AGB monte Carlo approach. Or discarded when using output from computeAGB()
.
The drawPlot
argument is a logical that if it is set TRUE
, a graph will appear with the plot given on absciss and the value
of AGB on ordinate, the red segments are the quantile, if AGB_val
is the result of the function AGBmonteCarlo()
.
If the subplot
arguments is set and the drawPlot
is set TRUE
, a graph is drawn with the spatialisation of the plots.
Examples
# Load a database
data(NouraguesHD)
data(KarnatakaForest)
# Modelling height-diameter relationship
HDmodel <- modelHD(D = NouraguesHD$D, H = NouraguesHD$H, method = "log2")
# Retrieving wood density values
# \donttest{
KarnatakaWD <- getWoodDensity(KarnatakaForest$genus, KarnatakaForest$species,
stand = KarnatakaForest$plotId
)
#> The reference dataset contains 16467 wood density values
#> Your taxonomic table contains 399 taxa
# }
# Propagating errors
# \donttest{
filt <- KarnatakaForest$plotId %in% c("BSP20", "BSP14")
resultMC <- AGBmonteCarlo(
D = KarnatakaForest$D[filt], WD = KarnatakaWD$meanWD[filt],
errWD = KarnatakaWD$sdWD[filt], HDmodel = HDmodel
)
plot <- KarnatakaForest$plotId[ filt ]
# The summary by plot
summaryByPlot(AGB_val = resultMC$AGB_simu, plot)
#> plot AGB Cred_2.5 Cred_97.5
#> 1 BSP14 155.7296 140.8388 171.9262
#> 2 BSP20 293.2367 270.6981 318.7032
# The summary by plot for computeAGB
H <- retrieveH(KarnatakaForest$D[filt], model = HDmodel)$H
AGB <- computeAGB(KarnatakaForest$D[filt], WD = KarnatakaWD$meanWD[filt], H = H)
summaryByPlot(AGB, plot)
#> plot AGB
#> 1 BSP14 156.0048
#> 2 BSP20 294.2444
# }