
Summarise by plot the posterior distribution of AGB values
Source:R/summaryByPlot.R
summaryByPlot.Rd
This function summarizes the matrix AGB_val
given by the function AGBmonteCarlo()
by plot.
Arguments
- AGB_val
Matrix resulting from the
AGBmonteCarlo()
function (AGB_val element of the list), or just the output of theAGBmonteCarlo()
function.- plot
Vector corresponding to the plots code (plots ID)
- drawPlot
A logic indicating whether the graphic should be displayed or not
Value
a data frame where:
plot
: the code of the plotAGB
: AGB value at the plot levelCred_2.5
: the 2.5\Cred_97.5
: the 97.5\
Details
If some trees belong to an unknown plot (i.e. NA value in the plot arguments), their AGB values are randomly assigned to a plot at each iteration of the AGB monte Carlo approach.
Examples
# Load a database
data(NouraguesHD)
data(NouraguesTrees)
# Modelling height-diameter relationship
HDmodel <- modelHD(D = NouraguesHD$D, H = NouraguesHD$H, method = "log2")
# Retrieving wood density values
# \donttest{
NouraguesWD <- getWoodDensity(NouraguesTrees$Genus, NouraguesTrees$Species,
stand = NouraguesTrees$plotId)
#> The reference dataset contains 16467 wood density values
#> Your taxonomic table contains 409 taxa
# }
# Propagating errors
# \donttest{
resultMC <- AGBmonteCarlo(
D = NouraguesTrees$D, WD = NouraguesWD$meanWD,
errWD = NouraguesWD$sdWD, HDmodel = HDmodel )
# The summary by plot
summaryByPlot(AGB_val = resultMC$AGB_simu, plot = NouraguesTrees$Plot)
#> plot AGB Cred_2.5 Cred_97.5
#> 1 201 458.0110 416.6221 513.6844
#> 2 204 511.0156 467.4786 560.3149
#> 3 213 373.5338 335.5389 418.2946
#> 4 223 290.9378 266.6484 322.4985
# }